[ 1
] 夏翠娟. 面向人文研究的“数据基础设施”建设——试论图书馆学对数字人文的方法论贡献[J]. 中国图书馆学报,2020,46(3):24–37.
[ 2 ] 司若,黄莺. 电影修复的历史、规范与时代意义[J]. 电影艺术,2021(5):102–110.
[ 3
] 李姗姗,梁钰唯. 数字人文视域下电影档案资源的建构与开发[J]. 档案学研究,2021(2): 68–74.
[ 4 ] 刘浏,王东波. 命名实体识别研究综述[J]. 情报学报,2018,37(3):329–340.
[ 5 ] 袁慧,马建霞. 命名实体情报挖掘方法研究及其在图书馆中的发展[J]. 图书馆理论与实践, 2017,216(10): 29–36; 47.
[ 6 ] Eddy S R. Hidden markov models[J]. Current
Opinionin Structural Biology,1996,6(3):361–365.
[ 7 ] Lafferty J,Mccallum A,Pereira
F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence
data[C]//Proceedings of the 18th Int Conf on Machine Learning. New York: ACM,2001:282–289.
[ 8 ] Isozaki H,Kazawa H. Efficient support vector classifiers for named entity
recognition[C]// Proceedings of the 19th International Conference on
Computational Linguistics. Stroudsburg:
Association for Computational Linguistics,2002: 1–7.
[ 9 ] Gupta S,Manning C D. Analyzing the dynamics of research by extracting
key aspects of scientific papers[C]// Proceedings of the 5th International Joint
Conference on Natural Language Processing. Asian Federation of Natural Language
Processing, 2011: 1–9.
[10] Le Cun Y,Bottou L,Bengio
Y,et al. Gradient-based
learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278– 2324.
[11] Rumelhart D E,Hinton G E,Williams R J. Learning representations by back-propagating
errors[J]. Nature,1986(6088):533–536.
[12] Hochreiter S,Schmidhuber J.Long short-term memory [J]. Neural computation,1997,9(8): 1735–1780.
[13] Vaswani A,Shazeer N,Parmar
N,et al. Attention is all you
need [C]// Proceedings of the 3lst International Conferenee on Neural
Information Processing Systems. NewYork:ACM,2017:6000–6010.
[14] Devlin J,Chang M W,Lee K,et al. BERT:Pre-training of deep
bidirectional transformers for language understanding[C]//Proceedings of the
Conference of the NAACL. 2019:4171–4186.
[15] Liu Y,Ott M,Goyal
N,et al. RoBERTa: A robustly optimized BERT
pretraining approach [OL]. arXiv:1907.11692,2019.
https://arxiv.org/ pdf/1907.11692.
[16] Yang Z L,Dai Z H,Yang
Y M,et
al. XLNet: Generalized
autoregressive pretraining for language understanding[C]// Proceedings of the
33rd International Conference on Neural Information Processing Systems. 2019:5753–5763.
[17] Lan Z,Chen
M,Goodman S,et al. Albert: A lite bert
forself-supervised learning of language representations [C]//International
Conference on Learning Representations. AddisAbaba:ICLR, 2020:102–108.
[18] Zeng H. Measuring massive multitask Chinese
Understanding[OL] axiv preprint arxiv:2304. 12986,2023.
https://arxiv.org/pdf/2304.12986.
[19] 赵继贵,钱育蓉,王魁,等. 中文命名实体识别研究综述[J]. 计算机工程与应用,2024,60(1): 15–27.
[20] 张继元,钱育蓉,冷洪勇,等. 基于深度学习的命名实体识别研究综述[J]. 现代电子技术, 2024,47(6):32–42.
[21] 章成志,谢雨欣,张恒. 学术文献全文内容中的方法实体细粒度抽取及演化分析研究[J]. 情报学报,2023,42(8):952–966.
[22] 李东升,鲍玉来,刘建华,等. 基于BERT 的高校图书馆微信信息服务的命名实体识别方法[J]. 现代情报,2023,43(4):64–76.
[23] 鲍彤,章成志.ChatGPT
中文信息抽取能力测评——以三种典型的抽取任务为例[J]. 数据分析与知识发现,2023,7(9):1–11.
[24] 肖丹,杨春明,张晖,等. 基于多头注意力的中文电子病历命名实体识别[J]. 计算机应用与软件,2024,41(1):133–138;160.
[25] 刘忠宝,党建飞,张志剑.《史记》历史事件自动抽取与事理图谱构建研究[J]. 图书情报工作, 2020,64(11):116–124.
[26] 崔竞烽,郑德俊,王东波,等. 基于深度学习模型的菊花古典诗词命名实体识别[J]. 情报理论与实践,2020,43(11):150–155.
[27] 刘江峰,冯钰童,王东波,等. 数字人文视域下SikuBERT
增强的史籍实体识别[J]. 图书馆论坛, 2022(10):61–72.
[28] 余馨玲,常娥. 基于DA-BERT-CRF 模型的古诗词地名自动识别研究——以金陵古诗词为例 [J]. 图书馆杂志,2023,42(10):87–94;73.
[29] 林立涛,王东波,刘江峰,等. 数字人文视域下典籍动物命名实体识别研究——以SikuBERT 预训练模型为例[J]. 图书馆论坛,2022,42(10): 42–50.
[30] 吴梦成,林立涛,齐月,等. 数字人文视域下先秦典籍植物知识挖掘与组织研究[J]. 图书情报工作,2023,67(12):103–113.
[31] 刘懋霖,赵萌,王昊. 面向古诗词的物象库构建方法及其分布规律研究[J]. 图书馆杂志,2024, 43(1):96–108.
[32] 郑爽. 清末民初文言统一对阅读文化嬗变的影响[J]. 大学图书馆学报,2018,36( 3):57–64.
[33] J Wei,X Ren,X Li,et al. NEZHA: Neural Contextualized
Representation for Chinese Language
Understanding
[OL]. arXiv Preprint,arXiv:1909. 00204.
https://arxiv.org/pdf/1909.00204.
[34] 何玉洁,杜方,史英杰,等. 基于深度学习的命名实体识别研究综述[J]. 计算机工程与应用, 2021,57(11):21–36.
[35] Z Wang,Y Ma,Z Liu,et al. R-Transformer: Recurrent Neural Network
Enhanced Transformer [OL]. arXiv Preprint,arXiv:1907.05572.
https://arxiv.org/ pdf/1907.05572.
[36] 邓小政. 面向法律文书知识图谱构建研究[D]. 南昌:江西财经大学,2021.
[37] 焦凯楠,李欣,朱容辰. 中文领域命名实体识别综述[J]. 计算机工程与应用,2021,57(16): 1–15.
[38] 张栋,陈文亮. 基于上下文相关字向量的中文命名实体识别[J]. 计算机科学,2021,48(3): 233–238.
[39] Qu L,Ferraro G,Zhou
L,et al. Named Entity
Recognition for Novel Types by Transfer Learning[C]// Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for
Computational Linguistics,2016: 899–905.
[40] Huang K X,Altosaar J,Ranganath
R. Clinical BERT: Modeling
Clinical Notes and Predicting Hospital Readmission [OL]. arXiv Preprint,arXiv: 1904.05342.
[41] Beltagy I,Lo K,Cohan
A. SciBERT:A
Pretrained Language Model for Scientific Text[C]// Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). 2019: 3613–3618.
|