[ 1 ] 顾静,丁华东. 口述历史档案社会记忆再生产的基本特点与思考[J]. 北京档案,2023(6): 19–23.
[ 2 ] 高冕. 中美英国家图书馆记忆工程中的口述历史资源建设比较研究[J]. 图书馆学研究,2020(23): 14–22.
[ 3 ] 毛海帆,李鹏达,田丹华,等.《录音录像类电子档案元数据方案》解读[J]. 中国档案,2018(5): 34–35.
[ 4 ] 口述史料采集与管理规范[EB/OL]. [2024- 05-10]. https://www.saac.gov.cn/daj/hybz/
201806/f5622dbc469340799aaccdd7e42a0150/ files/6b5376b5788b4ce680d08d1cb1b8946d.pdf.
[ 5 ] 录音录像档案管理规范[EB/OL]. [2024-05-10].
https://www.saac.gov.cn/daj/hybz/201912/5b3adc
136d6c4428bca60517658ac8e9.shtml.
[ 6 ] 闫静. 档案与记忆:中共党史研究的两个维度[J]. 档案学通讯,2021,259(3):12–17.
[ 7 ] 邓君,王阮. 口述历史档案资源知识图谱与多维知识发现研究[J]. 图书情报工作,2022,66(7): 4–16.
[ 8 ] 闫悦,郭晓然,王铁君,等. 问答系统研究综述[J]. 计算机系统应用,2023,32(8):1–18.
[ 9 ] MIT. START natural language question answering
system [EB/OL]. [2024-05-10]. http://start.csail. mit.edu.
[10] Singhal A. Introducing the knowledge graph: Things,not strings [EB/OL].
[2024-05-01].
https://blog.google/products/search/introducing-knowledge-graph-things-not/.
[11] 中国开放知识图谱[EB/OL]. [2024-05-15]. http:// openkg.cn/.
[12] 夏润泽,李丕绩.ChatGPT大模型技术发展与应用[J]. 数据采集与处理,2023,38(5):1017–1034.
[13] Lewis P,Perez E,Piktus
A,et al. Retrieval- Augmented
Generation for Knowledge-Intensive NLP Tasks[J]. Advances in Neural Information
Processing Systems,2020,33: 9459–9474.
[14] 王寰,孙雷,吴斌,等. 基于阅读理解智能问答的RPR 融合模型研究[J]. 计算机应用研究, 2022,39(3):726–731;738.
[15] 萨日娜,李艳玲,林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索,2022,16(8): 1727–1741.
[16] Wei J,Tay Y,Bommasani R,et al. Emergent abilities of
large language models[J]. arXiv: 2206.07682,2022.
[17] 张鹤译,王鑫,韩立帆,等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023,17(10):2377–2388.
[18] Stephen Gilbert,Jakob Nikolas Kather,Aidan Hogan. Augmented Non-Hallucinating Large Language Models
as Medical Information Curators [J]. NPJ Digital Medicine,2024,7(4):1–5.
[19] Wang H,Liu C,Xi N,et al. HuaTuo: tuning LLaMA model with
Chinese medical knowledge[J]. ar Xiv:2304.06975,2023.
[20] 杨喆,许甜,靳哲,等. 基于知识图谱的羊群疾病问答系统的构建与实现[J]. 华中农业大学学报,2023,42(3):63–70.
[21]
Zhentao Xu,Mark
Jerome Cruz,Matthew
Guevara,et
al. Retrieval-Augmented Generation with Knowledge Graphs for Customer Service
Question Answering [EB/OL]. [2024-05-15]. https://arxiv.org/abs/2404.17723.
[22] LangChain [EB/OL]. [2024-05-10].
https://python. langchain.com/.
[23] Yi Sun,Wanru Yang,Yin
Liu. The Application of Constructing Knowledge Graph of Oral History Archive
Resources Based on LLM-RAG [C] // 2024 the 8th International Conference on
Information System and Data Mining,ICISDM 2024,2024: 1–10.
[24] Abrams M H,Harpham G. A glossary of literary terms[M]. Boston:Cengage Learning,2011: 50–52.
[25] 宋宁远,王晓光. 基于情节本体的叙事性文本语义结构化表示方法研究[J]. 中国图书馆学报, 2020,46(2):96–113.
[26] 曾蕾,王晓光,范炜. 图档博领域的智慧数据及其在数字人文研究中的角色[J]. 中国图书馆学报,2018,44(1):17–34.
[27] Van Hage W R,Malaisé V,Segers
R,et al. Design and Use of the
Simple Event Model (SEM)[J]. Journal of Web
Semantics,2011,9(2): 128–136.
[28] Gottschalk S,Demidova E. EventKg:
A Multilingual Event-Centric Temporal Knowledge
Graph[C]//European Semantic Web Conference. Springer,Cham,2018: 272–287.
[29] Corda I,Bennett B,Dimitrova
V. A Logical Model of an Event Ontology for Exploring Connections in Historical
Domains[C]// Workshop on Detection,
Representation and Exploitation of Events in Semantic Web (Derive 2011),Tenth International Semantic
Web Conference (ISWC’11). 2011: 22–31.
[30] 刘宁静,孙翌,刘音,等. 基于口述历史资源的名人历史事件语义模型构建及实证研究[J/OL]. 现代情报:1–12[2024-05-13].
http://kns.cnki.net/ kcms/detail/22.1182.g3.20240402.1528.002.html.
[31] Tomaz Bratanic. Using a Knowledge Graph to Implement a RAG
Application [EB/OL]. [2024-03- 01].
https://neo4j.com/developer-blog/knowledge-graph-rag-application/.
|