[ 1 ] 中_国通信院 . 人工智能生成内容(AIGC)白皮书(2022年)[EB/OL]. [2023-07-26]. http://www.caict.ac.cn/kxyj/qwfb/bps/202209/t20220902_408420.htm.
[
2 ] 深圳市人工智能产业协会 . 一文读懂可信AI 大模型标准体系[EB/OL]. [2023-07-26]. https://szaicx.com/page142?article_id=13664.
[
3 ] 张晓林, 梁娜 . 知识的智慧化、智慧的场景化、智能的泛在化——探索智慧知识服务的逻辑框架[J]. 中_国图书馆学报,2023,49(3):4–18.
[ 4 ] Panda S, Kaur N. Exploring the viability ofChatGPT as an
alternative to traditional chatbotsystems in library and information
centers[J].Library Hi Tech News,2023,40(3):22–25.
[ 5 ] Chen X.
ChatGPT and its possible impact onlibrary reference services[J]. Internet
ReferenceServices Quarterly,2023,27(2):121–129.
[ 6 ] Lund D B,Wang T. Chatting about ChatGPT: howmay AI and GPT impact academia and libraries?[J].Library
Hi Tech News,2023,40(3) :26–29.
[ 7 ] 赵瑞雪,黄永文,马玮璐,等 . ChatGPT 对图书馆智能知识服务的启示与思考[J]. 农业图书情报学报,2023,35(1):29–38.
[ 8 ] Murphy K P. Probabilistic
machine learning: anintroduction[M]. MIT Press,2022.
[ 9 ] Gozalo-Brizuela R, Garrido-Merchan E C.ChatGPT is not all you need. A State
of the ArtReview of large Generative AI models[J]. arXivpreprint arXiv:2301.04655,2023.
[10] 上海图书馆开放数据竞赛 . 梦中_奇缘[EB/OL].[2023-02-20]. http://wrd2016.library.sh.cn/channel/video/?ccid=607A3DE098DCE7329C33DC5901307461.
[11]
MyHeritage. Deep Nostalgia[EB/OL]. [2023-02-22].https://www.myheritage.com/deep-nostalgia.
[12]
北京大学数字人文研究中_心 .《 永乐大典》高清影像数据库系统[EB/OL]. [2023-07-27]. https://pkudh.org/project/yongledadian/.
[13]
GitHub. AutoGPT[EB/OL]. [2023-07-20]. https://github.com/Significant-Gravitas/Auto-GPT.
[14]
Wei J, Wang X, Schuurmans D, et al. Chainof-thought prompting elicits reasoning inlarge
language models[J]. Advances in NeuralInformation Processing Systems,2022,35:24824–24837.
[15] 郭利敏_ . 基于卷积神经网络的文献自动分类研究[J].图书与情报,2017(6):96–103.
[16] 郭利敏_,葛亮,刘悦如 . 卷积神经网络在古籍汉字识别中_的应用实践[J]. 图书馆论坛,2019,39(10):142–148.
[17] 陈大庆 . 新时代图书馆数字化转型的思考[J]. 大学图书馆学报,2022,40(6):14–16.
[18] Library of Congress. Newspaper
Navigator[EB/OL].[2023-02-17]. https://labs.loc.gov/work/experiments/newspaper-navigator/.
[19]
Zhu Y, Wan J, Zhou Z,et al. Triple-to-text: convertingRDF triples into high-quality natural languagesvia
optimizing an inverse KL divergence[C]//Proceedings of the 42nd International
ACM SIGIRConference on Research and Development inInformation Retrieval. 2019:455–464.
[20] Distiawan B, Qi J, Zhang_ R, et al. GTR-LSTM:A triple encoder for sentence
g_eneration from RDFdata[C]//Proceeding_s of the 56th Annual Meeting_of the
Association for Computational Ling_uistics(Volume 1: Long_ Papers) . 2018:1627–1637.
[21] Bommasani R, Hudson D A, Adeli E, et al. Onthe opportunities and risks of foundation
models[J].arXiv preprint arXiv:2108. 07258,2021.
|