Fan Wuyou (Shanghai Jiao Tong University Library). Research of Instrument Named Entity Recognition (NER) in Research Paper Based on the Full Text[J]. Libraly Journal, 2022, 41(3): 126-134.
[ 1 ] 卢超,章成志,王玉琢,等. 语义特征分析的深
化——学术文献的全文计量分析研究综述[J].
中国图书馆学报,2021,47(2):110–131.
[ 2 ] 张婷,安嘉璐. 基于文献计量学的药学科研仪器
发展趋势研究[J]. 中国医药导报,2014,11(12):
129–133.
[ 3 ] 桑惠兰,唐俊峰,韩阜益. 高校大型仪器设备使
用效益评价体系的现状分析[J]. 实验室研究与
探索,2017,36(5):281–285.
[ 4 ] 魏朝俊,闫树刚,唐剑. 高校大型精密仪器设备
使用效益的评价分析[J]. 中国现代教育装备,
2011(5):12–14.
[ 5 ] 蒋婷 . 学术文献术语抽取方案比较研究[J]. 信息
资源管理学报,2021,11(1):112–122.
[ 6 ] 化柏林. 针对中文学术文献的情报方法术语抽
取[J]. 现代图书情报技术,2013(6):68–75.
[ 7 ] 夏天. 面向中文学术文本的单文档关键短语抽取[J].
数据分析与知识发现,2020,4(7):76–86.
[ 8 ] 章成志,谢雨欣,宋云天. 学术文本中细粒度知识
实体的关联分析[J]. 图书馆论坛,2021,41(3):
12–20.
[ 9 ] T. V. Geetha,R. Hema. Recognition of Chemical
Entities using Pattern Matching and Functional
Group Classification[J]. International Journal of
Intelligent Information Technologies (IJIIT),
2016,12(4):21–44.
[10] Cousyn C, Bouchard K, Gaboury S, et al. Towards
Using Scientific Publications to Automatically
Extract Information on Rare Diseases[J]. Mobile Networks and Applications, 2020, 25(3):953–
960.
[11] Spasi I, Ananiadou S. Using automatically learnt
verb selectional preferences for classification
of biomedical terms[J]. Journal of Biomedical
Informatics, 2004, 37(6):483–497.
[12] Malgorzata Marciniak,Agnieszka Mykowiecka.
Nested term recognition driven by word connection
strength[J]. Terminology. International Journal
of Theoretical and Applied Issues in Specialized
Communication,2015,21(2):180–204.
[13] Usié Anabel, Alves Rui, Solsona Francesc, et al.
CheNER: chemical named entity recognizer.[J].
Bioinformatics, 2014, 30(7):1039–1040.
[14] Rockt?schel Tim, Weidlich Michael, Leser Ulf.
ChemSpot: a hybrid system for chemical named entity
recognition.[J]. Bioinformatics, 2012, 28(12):
1633–1640.
[15] Robert Leaman,Chih-Hsuan Wei,Zhiyong
Lu. tmChem: a high performance approach
for chemical named entity recognition and
normalization[J]. Journal of Cheminformatics,
2015,7(S1):S3.
[16] Corbett P, Boyle J. Chemlistem: Chemical named
entity recognition using recurrent neural networks[J].
Journal of Cheminformatics, 2018, 10:59.
[17] Korvigo Ilia,Holmatov Maxim,Zaikovskii
Anatolii,et al. Putting hands to rest: efficient deep
CNN-RNN architecture for chemical named entity
recognition with no hand-crafted rules.[J]. Journal of
cheminformatics,2018,10:28.
[18] Kolluru Balakrishna, Hawizy Lezan, Murray-
Rust Peter, et al. Using workflows to explore and
optimise named entity recognition for chemistry[J].
PLoS ONE, 2011, 6(5):e20181.
[19] Tsendsuren Munkhdalai, Meijing Li, Khuyagbaatar
Batsuren, et al. Incorporating domain knowledge
in chemical and biomedical named entity
recognition with word representations.[J]. Journal of
Cheminformatics, 2015, 7(S1):S9.
[20] Krallinger M, Leitner F, Rabal O, et al.
CHEMDNER: The drugs and chemical names
extraction challenge[J]. Journal of Cheminformatics,
2015, 7:S1.
[21] Cho H, Choi W, Lee H. A method for named
entity normalization in biomedical articles:
Application to diseases and plants[J]. BMC
Bioinformatics, 2017, 18:451.
[22] Nath N, Lee S H, Mcdonnel M, et al. The quest
for better clinical word vectors: Ontology based
and lexical vector augmentation versus clinical
contextual embeddings[J]. Computers in Biology
and Medicine, 2021, 134(2–3):104433.
[23] PDFMiner[EB/OL]. [2014-03-24]. http://www.
unixuser.org/~euske/python/pdfminer/index.html.
[24] 杨一帆,陈文亮. 旅游场景下的实体别名抽取联
合模型[J]. 中文信息学报,2020,34(6):55–63.
[25] models.word2vec — Word2vec embeddings. [EB/
OL]. [2021-04-16]. http://https://radimrehurek.
com/gensim/models/word2vec.html.
[26] 冯俐. 中文分词技术综述[J]. 现代计算机(专业
版),2018(34):17–20.
[27] Levenshtein V I. Binary codes capable of correcting
deletions, insertions, and reversals. Dokl. Soviet
physics doklady, 1966, 10(8):707–710.
[28] NLTK 3.6.2 documentation [EB/OL]. [2021-04-20].
http://www.nltk.org/.
[29] CRF++: Yet Another CRF toolkit [EB/OL]. [2013-
02-13]. http://taku910.github.io/crfpp/.
[30] ADVANCED: MAKING DYNAMIC DECISIONS
AND THE BI-LSTM CRF [EB/OL]. [2019-01-17].
https://pytorch.org/tutorials/beginner/nlp/advanced_
tutorial.html.