[ 1 ] 阮光册, 夏磊. 推荐系统的发展与公共图书馆个性化信息服务探讨[J]. 图书馆, 2016(2): 94-99.
[ 2 ] H u R o n g , P u P . H e l p i n g u s e r s p e r c e i v erecommendation diversity[C]. proceedings of theWorkshop on Novelty and Diversity in RecommenderSystems. New York: ACM, 2011: 43-50.
[ 3 ] Zhou Tao, Su Riqi, Liu Runran, et al. Accurate anddiverse recommendations via eliminating redundantcorrelations[J]. New Journal of Physics, 2009(11):123008-123026.
[ 4 ] 安维, 刘启华, 张李义.个性化推荐系统的多样性研究进展[J]. 图书情报工作, 2013, 57(20):127-135.
[ 5 ] Adomavicius G, Kwon Y O. Improving aggregaterecommendation diversity using ranking-basedtechniques[J]. IEEE Transactions on Knowledge andData Engineering, 2012, 24(5): 896-911.
[ 6 ] Z i e g l e r C N , L a u s e n G . M a k i n g p r o d u c trecommendations more diverse[J]. IEEE DataEngineering Bulletin, 2009, 32(4): 23-32.
[ 7 ] T Mikolov, K Chen, G Corrado, et al. EfficientEstimation of Word Representations in VectorSpace[J]. Computer Science, 2013.
[ 8 ] Mnih A, Hinton G. Three new graphical modelsfor statistical language modelling[C]. In processingof the 24th International Conference on MachineLearning. Corvalis, Oregon, USA.2007: 641-648.
[ 9 ] 姜书浩, 潘旭华, 薛福亮. 一种基于项目聚类的自主推荐多样性优化算法[J]. 现代图书情报技术,2015, 258(5): 34-41.
[10] 朱白. 数字图书馆推荐系统协同过滤算法改进及实证分析[J]. 图书情报工作, 2017, 61(9):130-134.
[11] 赵麟.基于最大频繁模式挖掘算法进行书目推荐系统的设计与设计[J]. 现代图书情报技术,2010(5): 23-28.
|