[ 1 ] Lei D T. Industry Evolution and CompetenceDevelopment: the Imperatives of TechnologicalConergence[J]. International Journal of TechnologyManagement, 2000, 19(7-8): 699-738.
[ 2 ] Kodama F. Emerging Patterns of Innovation: Sourcesof Japan’s Technological Edge[J]. R&D Management,1996, 26(2): 179-181.
[ 3 ] Bores C, Saurina C, Torres R. TechnologicalConvergence: A Strategic Perspective[J].Technovation, 2003, 23(1): 1-13.
[ 4 ] 周磊, 杨威, 王芮. 技术融合视角下新兴技术识别研究[J]. 科技进步与对策, 2018, 35(15): 57-62.
[ 5 ] 周磊, 杨威. 竞争情报视角下突破性创新的识别思路[J]. 情报杂志, 2015, 34(1): 32-37.
[ 6 ] Kim B, Gazzola G, Yang J, et al. Two-phase edgeoutlier detection method for technology opportunitydiscovery[J]. Scientometrics, 2017, 113(1):1-16.
[ 7 ] Kim B, Gazzola G, Lee J M, et al. Inter-clusterconnectivity analysis for technology opportunitydiscovery[J]. Scientometrics, 2014, 98(3):1811-1825.
[ 8 ] Kim J, Lee S. Forecasting and identifying multitechnologyconvergence based on patent data:the case of IT and BT industries in 2020[J].Scientometrics, 2017, 111(1): 47-65.
[ 9 ] 江屏, 王川, 孙建广, 等. IPC聚类分析与TRIZ相结合的专利群规避设计方法与应用[J]. 机械工程学报, 2015(7): 144-154.
[10] 周磊, 杨威, 张玉峰. 基于专利挖掘的突破性创新识别框架研究[J]. 情报理论与实践, 2016, 39(9):73-76.
[11] Caviggioli F. Technology fusion: Identification andanalysis of the drivers of technology convergenceusing patent data[J]. Technovation, 2016, 55(56):22-32.
[12] Peter Harrington. 机器学习实战[M]. 北京: 人民邮电出版社, 2013: 201-209.
[13] 黄鲁成, 黄斌, 吴菲菲, 等. 基于专利共类的信息与生物技术融合趋势分析[J]. 情报杂志, 2014,33(8): 59-63.
[14] 马瑞琼. 复杂网络中社团发现算法的研究[D]. 成都: 电子科技大学, 2015.
[15] 勒孚刚. 基于LDA模型的专利文本分类及演化研究[D]. 赣州: 江西理工大学, 2017.
[16] Newman M E J. Fast algorithm for detectingcommunity structure in networks. [J]. Phys RevE Stat Nonlin Soft Matter Phys, 2003, 69(6 Pt 2):066133.
[17] Newman M E J, Girvan M. Finding and evaluatingcommunity structure in networks[J]. Physical ReviewE Statistical Nonlinear & Soft Matter Physics, 2004,69(2): 026113.
[18] Blondel V D, Guillaume J L, Lambiotte R, et al.Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics, 2008(10): 155-168.
[19] Blei D M, Ng A Y, Jordan M I. Latent dirichletallocation[J].Machine Learning Research Archive, 2003(3): 993-1022.
[20] Granovetter M S. The Strength of Weak Ties[J].American Journal of Sociology, 1973, 78(6):1360-1380.
[21] 刘军. 整体网分析: UCINET软件实用指南[M]. 上海: 上海人民出版社, 2009: 126-136.
[22] De Meo P, Ferrara E, Fiumara G, et al. On Facebook,most ties are weak[J]. Communications of the Acm,2012, 57(11): 78-84.
[23] Asur S. An event-based framework for characterizingthe evolution of interaction graphs[J]. AcmTransactions on Knowledge Discovery from Data,2009, 3(4): 1-36.
[24] Knoke D, Song Y. 社会网络分析[M]. 上海: 上海人民出版社, 2017: 116-121.
[25] Freeman L C. A set of measures of centrality basedon betweenness. [J]. Sociometry, 1977, 40(1): 35-41.
[26] 百度百科. 百度阿波罗平台[OL]. https://baike.baidu.com/item/阿波罗/20625862.
|