[ 1 ] Fan J, Han F, Liu H. Challenges of Big DataAnalysis[J]. National Science Review, 2014, 1(2):293-314.
[ 2 ] 孟小峰, 慈祥. 大数据管理: 概念、技术与挑战[J].计算机研究与发展, 2013, 50(1): 146-169.
[ 3 ] Tumasjan A, Sprenger T O, Sandner P G, et al.Predicting Elections with Twitter: What 140Characters Reveal about Political Sentiment[C]//International Conference on Weblogs and SocialMedia, ICWSM 2010, Washington, DC, USA, May.DBLP, 2010: 178-185.
[ 4 ] Raghupathi W, Raghupathi V. Big data analyticsin healthcare: promise and potential[J]. HealthInformation Science & Systems, 2014, 2(1): 3.
[ 5 ] Manyika J, Chui M, Brown B, et al. Big data: Thenext frontier for innovation, competition, andproductivity[R]. McKinsey Global Institute, 2011.
[ 6 ] Bollen J, Mao H, Zeng X. Twitter mood predicts thestock market[J]. Journal of Computational Science,2010, 2(1): 1-8.
[ 7 ] Hey T. The Fourth Paradigm-Data-IntensiveScientific Discovery[J]. Proceedings of the IEEE,2011, 99(8): 1334-1337.
[ 8 ] Donoho D L. High-Dimensional Data Analysis:The Curses and Blessings of Dimensionality[C]//Lecture-Math Challenges of Century. 2000: 178-183.
[ 9 ] Miller H J. THE DATA AVALANCHE IS HERE.SHOULDN’T WE BE DIGGING? [J]. Journal ofRegional Science, 2010, 50(1): 181-201.
[10] Davis J, Goadrich M. The relationship betweenPrecision-Recall and ROC curves[C]// ICML ’06:Proceedings of the, International Conference onMachine Learning, New York, NY, USA. ACM Press,2006: 233-240.
[11] Leek J T, Peng R D. What is the question?[J].Science, 2015, 347(6228): 1314.
[12] Tuckey J W. Exploratory Data Analysis[M]//Exploratory data analysis. Addison-Wesley Pub. Co,1977: 163-182.
[13] Shmueli G, Koppius O. Predictive Analytics inInformation Systems Research[J]. Social ScienceElectronic Publishing, 2011, 35(3): 553-572.
[14] 朝乐门, 邢春晓, 张勇. 数据科学研究的现状与趋势[J]. 计算机科学, 2018, 45(1): 1-13.
[15] Mcafee A, Brynjolfsson E. Big data: the managementrevolution[J]. Harvard Business Review, 2012,90(10): 60-66.
[16] Holland P W. Statistics and Causal Inference[J].Journal of the American Statistical Association,1986, 81(396): 945-960.
[17] Konishi S, Kitagawa G. Information Criteria andStatistical Modeling[M]. Springer New York, 2008.
[18] Lin M, Lucas H C, Shmueli G. Too Big to Fail:Larger Samples and False Discoveries[J]. RobertH. Smith School Research Paper No. RHS 06-068,2011.
[19] Kitchin R. Big Data, new epistemologies and paradigmshifts[J]. Big Data & Society, 2014, 1(1): 1-12.
[20] Lazer D, Kennedy R, King G, et al. The Parable ofGoogle Flu: Traps in Big Data Analysis[J]. Science, 2014, 343(6176): 1203-1205.
[21] Borgman C L. Big Data, Little Data, No Data[M].Cambridge, MA: MIT Press, 2015.
[22] Cuzzocrea A, Song I Y, Davis K C. Analyticsover large-scale multidimensional data:the bigdata revolution![C]//Proceedings of the ACM 14thinternational workshop on Data Warehousing andOLAP-DOLAP’11. New York, USA: ACM Press,2011: 101-104.
[23] Ding Y, Stirling K. Data-driven Discovery: A NewEra of Exploiting the Literature and Data[J]. Journalof Data & Information Science, 2016, 1(4): 1-9.
[24] Zhuang Y T, Wu F, Chen C, et al. Challenges andopportunities: from big data to knowledge in AI 2.0[J].Frontiers of Information Technology & ElectronicEngineering, 2017, 18(1): 3-14.
[25] Jagadish H V. Big Data and Science: Myths andReality[J]. Big Data Research, 2015, 2(2): 49-52.
[26] 杨京, 王效岳, 白如江, 等. 大数据背景下数据科学分析工具现状及发展趋势[J]. 情报理论与实践, 2015, 38(3): 134-137, 144.
[27] 洪亮, 李雪思, 周莉娜. 领域跨越: 数据挖掘的应用和发展趋势[J]. 图书情报知识, 2017(4): 4, 22-32.
[28] Jagadish H V, Gehrke J, Labrinidis A, et al. Big Dataand Its Technical Challenges[J]. Communications ofthe Acm, 2014, 57(7): 86-94.
[29] F?llesdal D. Hermeneutics and the hypotheticodeductivemethod[J]. Dialectica, 1979, 33(3-4):319-336. |