[ 1 ] Ronchi A M.
eCulture:Cultural Content inthe Digital Age[M]. Berlin: Springer
BerlinHeidelberg,2009:33–70.
[ 2 ] 孔高敏. 我国基层公共数字文化服务新媒体联动机制研究[J]. 图书馆,2024(7):47–55.
[ 3 ]
Sweller J,van Merrienboer J J G,Paas F G W C.Cognitive
Architecture and Instructional Design[J].Educational Psychology Review,1998,10(3):251–296.
[ 4 ]
Mayer R E. Multimedia learning[M]. Amsterdam:Elsevier,2002:85–139.
[ 5 ] 袁曦临. 网络数字阅读行为对阅读脑的改造及其对认知的影响[J]. 图书馆杂志,2016,35(4):18–26.
[ 6 ] He Y,Guo Z,Wang X,et al. Effects of
audiovisualinteractions on working memory task performance—interference or
facilitation[J]. Brain Sciences,2022,12(7):886.
[ 7 ] Ren Y,Zhou Z,Bi J,et al. Effect of
attentionalload on audio-visual integration:an ERP study[C]//Proceedings
of the 2020 IEEE InternationalConference on Mechatronics and Automation(ICMA).Beijing,China. IEEE,2020:1443–1448.
[ 8 ] 王玉琴,王咸伟. 媒体组合与学习步调对多媒体学习影响的眼动实验研究[J]. 电化教育研究,2007(11):61–66.
[ 9 ] 龚少英,段婷,王福兴,等. 装饰图片影响多媒体学习的眼动研究[J]. 心理发展与教育,2014,30(4):403–410.
[10] 王玉鑫,谢和平,王福兴,等. 多媒体学习的图文整合:空间邻近效应的元分析[J]. 心理发展与教育,2016,32(5):565–578.
[11] Kosch
T,Schmidt A,Thanheiser S,et al.One does not
Simply RSVP:Mental Workloadto Select Speed Reading Parameters usingElectroencephalography[C]//Proceedings
ofthe 2020 CHI Conference on Human Factors inComputing Systems. Honolulu,HI,USA. ACM,2020:1–13.
[12] Chen C,Lin Y. Effects of
different text displaytypes on reading comprehension,sustainedattention
and cognitive load in mobile readingcontexts[J]. Interactive Learning
Environments,2016,24(3):553–571.
[13] 熊俊梅,辛亮,高苗苗,等. 视觉和听觉情绪设计对多媒体学习的影响[J]. 心理科学,2018,41(5):1124–1129.
[14] 黄先蓉,张窈. 数字阅读研究热点与动向:伦理、行为与应用[J]. 出版科学,2020,28(2):5–16.
[15] 马捷,张光媛,徐晓晨,等. 数字阅读与纸质阅读理解效果及沉浸体验实验研究——以科普知识为例[J]. 图书情报工作,2018,62(16):35–46.
[16] Cheng
K. Reading an augmented reality book:An exploration of
learners’ cognitive load,motivation,and attitudes[J].
Australasian Journalof Educational Technology,2017,33(4):53–69.
[17] Chang C,Warden C A,Liang C,et al. Effects ofdigital
game-based learning on achievement,flowand overall
cognitive load[J]. Australasian Journal ofEducational Technology,2018,34(4):155–167.
[18]
Hawlitschek A,Joeckel S. Increasing the effectivenessof digital
educational games:The effects of a learninginstruction on students’
learning,motivation andcognitive load[J]. Computers in Human
Behavior,2017,72:79–86.
[19] Huang C
L,Luo Y F,Yang S C,et al. Influenceof
Students’ Learning Style,Sense of Presence,and Cognitive Load
on Learning Outcomes in anImmersive Virtual Reality Learning Environment[J].Journal
of Educational Computing Research,2019,58(3):596–615.
[20]
Minkley N,Xu K M,Krell M. AnalyzingRelationships Between
Causal and AssessmentFactors of Cognitive Load:Associations
BetweenObjective and Subjective Measures of CognitiveLoad,Stress,Interest,and
Self-Concept[J].Frontiers in Education,2021,6:632907.
[21]
Mutlu-Bayraktar D,Cosgun V,Altan T. Cognitiveload in multimedia
learning environments:Asystematic review[J]. Computers &
Education,2019,141:103618.
[22] Chen F,Zhou J,Wang Y,et al. Theoretical
Aspectsof Multimodal Cognitive Load Measures[M]. Cham:Springer
International Publishing,2016:33–71.
[23] Chen F,Ruiz N,Choi E,et al. Multimodal
behaviorand interaction as indicators of cognitive load[J].ACM Trans. Interact.
Intell. Syst.,2013,2(4):22.
[24] Vanneste P,Raes A,Morton J,et al. Towardsmeasuring
cognitive load through multimodalphysiological data[J]. Cognition,Technology &Work,2021,23(3):567–585.
[25] Y L,Y Y,H T,et al. Cognitive
Load Predictionfrom Multimodal Physiological Signals usingMultiview
Learning[J]. IEEE Journal of Biomedicaland Health Informatics,2023:1–11.
[26]
Larmuseau C,Cornelis J,Lancieri L,et al. Multimodal
learning analytics to investigatecognitive load during online problem
solving[J].British Journal of Educational Technology,2020,51(5):1548–1562.
[27]
Ahmad M I,Robb D A,Keller I,et al. Towards aMultimodal
Measure for Physiological Behavioursto Estimate Cognitive Load[C]//Proceedings
of the2020HCI International Conference. Copenhagen,Denmark. HCII,2020:3–13.
[28] Gjoreski
M,Mahesh B,Koleni T,et al. CognitiveLoad
Monitoring With Wearables—Lessons LearnedFrom a Machine Learning
Challenge[J]. IEEEAccess,2021,9:103325–103336.
[29]
Herbig N,Düwel T,Helali M,et al.
InvestigatingMulti-Modal Measures for Cognitive Load Detectionin
E-Learning[C]//Proceedings of the 28th ACMConference on User Modeling,Adaptation andPersonalization.
Genoa,Italy. ACM,2020:88–97.
[30] Herbig
N,Pal S,Vela M,et al. Multi-modalindicators
for estimating perceived cognitive loadin post-editing of machine
translation[J]. MachineTranslation,2019,33(1):91–115.
[31]
Giannakos M N,Sharma K,Pappas I O,et al.Multimodal
data as a means to understand thelearning experience[J]. International Journal
ofInformation Management,2019,48:108–119.
[32]
Oschlies-Strobel A,Gruss S,Jerg-Bretzke L,et al. Preliminary
classification of cognitive loadstates in a human machine interaction
scenario[C]//Proceedings of the 2017 International Conference onCompanion
Technology (ICCT).Ulm,Germany.IEEE,2017:1–5.
[33] Canova G.
Machine Learning and data fusion ofphysiological signals for assessing a
subject’s stresslevel and cognitive load[D]. Turin:Politecnico diTorino,2024.
[34] Hart S G,Staveland L E.
Development of NASATLX(Task Load Index):Results of
Empiricaland Theoretical Research[M]. Amsterdam:North-Holland,1988:139–183.
[35] Lahat
D,Adali T,Jutten C. Multimodal DataFusion:An Overview of
Methods,Challenges,andProspects[J]. Proceedings of the
IEEE, 2015, 103(9):1449–1477.
[36]
Miller G A. The magical number seven,plusor minus two:Some limits on our
capacity forprocessing information.[J]. Psychological Review,1956,63(2):81.
[37] Wang G,Tian L,Liu J,et al. Neural
mechanismsof cognitive load in Multimedia Learning:a Metaanalysisof
EEG frequency Band Modulation[J].Current Psychology,2024,43(37):29316–29332.
[38]
Zammouri A,Moussa A A,Chevallier S. Useof cognitive load
measurements to design a newarchitecture of intelligent learning systems[J].
ExpertSystems with Applications,2024,237:121253.
[39]
Consalvi L,Ouwehand K,Paas F. Effects ofObserving Urban and
Natural Scenes on WorkingMemory Depletion and Restoration:An EEGStudy[J].
Education Sciences,2024,14(11):1204.
[40]
Havugimana F,Moinudin K A,Yeasin M. Deeplearning
framework for modeling cognitive loadfrom small and noisy eeg data[J]. IEEE
Transactionson Cognitive and Developmental Systems,2023,16(3):1006–1015.
[41] Liu
Y,Yu Y,Ye Z,et al. Fusion of
spatial,temporal,and spectral EEG signatures improves
multilevelcognitive load prediction[J]. IEEE Transactions onHuman-Machine
Systems,2023,53(2):357–366.
[42] Ruo A,Villani V,Sabattini L. Use
of EEG signalsfor mental workload assessment in human-robotcollaboration[C]//Proceedings
of the 2022 Human-Friendly Robotics. Delft,The Netherlands.
Springer,2022:233–247.
[43] Chikhi S,Matton N,Blanchet S. EEG
power spectralmeasures of cognitive workload:A
meta-analysis[J].Psychophysiology,2022,59(6):e14009.
[44]
Klimesch W. EEG alpha and theta oscillationsreflect cognitive and memory
performance:areview and analysis[J]. Brain Research Reviews,1999,29(2/3):169–195.
[45] 王国华,田梁浩,聂胜欣,等. 多媒体学习中表征认知负荷的眼动指标研究[J]. 电化教育研究,2023,44(10):54–62.[46] Zhou Y,Huang S,Xu Z,et al. Cognitive
WorkloadRecognition Using EEG Signals and Machine Learning:A Review[J]. IEEE
Transactions on Cognitive andDevelopmental Systems,2022,14(3):799–818.[47]
Mutlu-Bayraktar D,Ozel P,Altindis F,et al.Relationship
between objective and subjectivecognitive load measurements in multimedia
learning[J].Interactive Learning Environments,2023,31(3):1322–1334.
|