[ 1 ] Garfield E, Small H J E. Identifying the changing
frontiers of science[J]. Evolution, 1989, 1(5165): 11.
[ 2 ] 中华人民共和国国务院. 关于全面加强基础
科学研究的若干意见[EB/OL]. [2019-10-09].
http://www.gov.cn/zhengce/content/2018-01/31/
content_5262539.htm.
[ 3 ] 罗瑞, 许海云, 董坤.领域前沿识别方法综述[J]. 图
书情报工作, 2018, 62(23): 119-131.
[ 4 ] 靳杨, 徐路路.基于本体语义增强和多源数据融
合的石墨烯医学应用前沿探测[J]. 医学信息学杂
志, 2019, 40(2): 70-74;85.
[ 5 ] Hou J H, Yang X C, Chen C M. Emerging trends
and new developments in information science: a
document co-citation analysis(2009-2016)[J].
Scientometrics, 2018, 115(2): 869-892.
[ 6 ] Zhang T, Chi H, Ouyang Z L, et al. Detecting
research focus and research fronts in the medical big
data field using co-word and co-citation analysis[M].
New York: IEEE, 2018: 313-320.
[ 7 ] Persson O. THE INTELLECTUAL BASE AND
RESEARCH FRONTS OF JASIS 1986-1990[J].
Journal of the American Society for Information
Science, 1994, 45(1): 31-38.
[ 8 ] Liu J S, Lu L Y Y, Lu W-M. Research fronts in
data envelopment analysis[J]. Omega-International
Journal of Management Science, 2016, 58: 33-45.
[ 9 ] Zhang L, Glanzel W, Ye F Y. The Dynamic evolution
of core documents: an experimental study based on
h-related literature(2005-2013)[J]. Scientometrics,
2016, 106(1): 369-381.
[10] Shibata N, Kajikawa Y, Takeda Y, et al. Detecting
emerging research fronts based on topological
measures in citation networks of scientific
publications[J]. Technovation, 2008, 28(11):
758-775.
[11] Persson O. Identifying research themes with weighted
direct citation links[J]. Journal of Informetrics, 2010,
4(3): 415-422.
[12] 许振亮, 郭晓川.国际技术创新研究前沿领域的
知识图谱分析——作者共被引网络与聚类分析
视角[J]. 科学学研究, 2011, 29(11): 1625-1637.
[13] 张一楠, 黄国彬, 王亚男, 等.近十年我国非图情
领域科学计量可视化的应用研究剖析[J]. 图书馆
杂志, 2015, 34(5): 32-40.
[14] Wang F, Jia X, Wang X, et al. Particulate matter and
atherosclerosis: a bibliometric analysis of original
research articles published in 1973-2014[J]. Bmc
Public Health, 2016, 16(1): 8.
[15] Nguyen K L, Shin B J, Yoo S J, et al. Hot Topic
Detection and Technology Trend Tracking for
Patents utilizing Term Frequency and Proportional
Document Frequency and Semantic Information,
2016 International Conference on Big Data and
Smart Computing, 2016: 223-230.
[16] Chen C M. CiteSpace II: Detecting and visualizing
emerging trends and transient patterns in scientific
literature[J]. Journal of the American Society for
Information Science and Technology, 2006, 57(3):
359-377.
[17] Wei W J, Shi B, Guan X, et al. Mapping theme
trends and knowledge structures for human neural
stem cells: a quantitative and co-word biclustering
analysis for the 2013-2018 period[J]. Neural
Regeneration Research, 2019, 14(10): 1823-1832.
[18] Liu H, Yu Z, Chen C, et al. Visualization and
Bibliometric Analysis of Research Trends on Human
Fatigue Assessment[J]. Journal of Medical Systems,
2018, 42(10): 179.
[19] Cantos-Mateos G, Zulueta M A, Vargas-Quesada B,
et al. Development of Spanish research on stem cells.
Visualization and identification of the main research
fronts[J]. Professional De La Information, 2014,
23(3): 259-271.
[20] Li M A, Chu Y Q. Explore the research front of a
specific research theme based on a novel technique
of enhanced co-word analysis[J]. Journal of
Information Science, 2017, 43(6): 725-741.
[21] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet
Allocation[J]. Journal of Machine Learning Research,
2003, 3(4/5): 993-1022.
[22] 高楠, 傅俊英, 赵蕴华.融合专利共被引和耦合方
法的研究前沿识别——以脑机接口领域为例[J].
情报学报, 2016, 35(9): 971-979.
[23] 刘博文, 白如江, 周彦廷, 等.基金项目数据和论
文数据融合视角下科学研究前沿主题识别——
以碳纳米管领域为例[J]. 数据分析与知识发现,
2019, 3(8): 114-122.
[24] 谭晓, 李辉.基于多源数据知识融合方法的研究
前沿识别[J]. 现代情报, 2019, 39(8): 29-36.
[25] 李广建, 杨林.大数据视角下的情报研究与情报
研究技术[J]. 图书与情报, 2012, 148(6): 1-8.
[26] 陈科文, 张祖平, 龙军.多源信息融合关键问题、
研究进展与新动向[J]. 计算机科学, 2013, 40(8):
6-13.
[27] 化柏林.多源信息融合方法研究[J]. 情报理论与
实践, 2013, 36(11): 16-19.
[28] 郑彦宁, 刘志辉, 赵筱媛, 等. 基于多源信息与多
元方法的产业竞争情报分析范式[J]. 情报学报,
2013, 32(3): 228-234.
[29] 许海云, 董坤, 隗玲, 等.科学计量中多源数据
融合方法研究述评[J]. 情报学报, 2018, 37(3):
318-328.
[30] 张强.基于专利计量的专利实施许可实证研究[D].
重庆: 西南政法大学, 2012.
[31] Park I, Lee K, Yoon B. Exploring Promising
Research Frontiers Based on Knowledge Maps in the
Solar Cell Technology Field[J]. Sustainability, 2015,
7(10): 13660-13689.
[32] 徐路路, 王效岳, 白如江.基于PLDA模型与多数
据源融合相关性分析的新兴主题探测研究——
以石墨烯领域为例[J]. 情报理论与实践, 2018,
41(4): 63-69;43.
[33] 苏娜, 张志强.基于z得分的科学计量学多关系融
合方法研究[J]. 情报学报, 2013, 32(3): 244-250.
[34] YANG GC, LI G, LI CY, et al. Using the
comprehensive patent citation network(CPC)to
evaluate patent value[J]. Scientometrics, 2015,
105(3): 1319-1346.
[35] YAN E, DING Y. Scholarly network similarities:
How biblio-graphic coupling networks, citation
networks, co-citation networks, topical networks,
co-authorship networks, and co-word networks
relate to each other[J]. Journal of the Association for
Information Science and Technology, 2012, 63(7):
1313-1326.
[36] WEN B, HORLINGS E, VAN D Z, et al. Mapping
science through bibliometric triangulation: An
experimental approach applied to water research[J].
Journal of the Association for Information Science
and Technology, 2017, 68(3): 724-738.
[37] TANG J, JIN R, ZHANG J. A topic modeling
approach and its integration into the random walk
framework for academic search[C]// Data Mining,
2008.ICDM’08. Eighth IEEE International
Conference on. IEEE, 2008: 1055-1060.
[38] TANG J, ZHANG J, YAO J, et al. Arnetminer:
extraction and mining of academic social
networks[C]// Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, 2008: 990-998.
[39] TANG J, ZHANG J, JIN R, et al. Topic level
expertise search over heterogeneous networks[J].
Machine Learning, 2011, 82(2): 211-237.
[40] XU S, SHI Q, QIAO X, et al. Author-Topic over
Time(AToT): A Dynamic Users’ Interest Model[C]//
Mobile, Ubiquitous, and Intelligent Computing.
Springer Berlin Heidelberg, 2014: 239-245.
[41] 史庆伟, 乔晓东, 徐硕, 等.作者主题演化模型及
其在研究兴趣演化分析中的应用[J]. 情报学报,
2013, 32(9): 912-919.
[42] XU S, SHI Q, QIAO X, et al. A dynamic users’
interest discovery model with distributed inference
algorithm[J]. International Journal of Distributed
Sensor Networks, 2014, 10(4): 280892.
[43] 张维冲, 王芳, 赵洪.多源信息融合用于新兴技术
发展趋势识别——以区块链为例[J]. 情报学报,
2019, 38(11): 1166-1176.
[44] 任红娟.基于文献内容和引用特征融合的科学
结构分析方法研究[J]. 情报学报, 2013, 32(10):
1068-1074.
[45] FENG Jia, ZHANG Yunqiu, ZHANG Hao.
Improving the Co-Word Analysis Method Based on
Semantic Distance[J]. Scientometrics, 2017, 111(3):
1521-1531.
[46] 冯佳, 张云秋.基于本体的研究主题语义分析方
法研究[J]. 图书情报工作, 2018, 62(7): 96-103.
[47] 冯佳, 张云秋.基于LDA和本体的科学前沿识别与
分析方法研究[J]. 情报理论与实践, 2017, 40(8):
49-54.
[48] 曾文, 李辉, 樊彦芳, 等.开源情报环境下的科技
前沿识别体系研究[J]. 情报理论与实践, 2019,
42(7): 30-34.
|