[ 1
] 北京天文台. 中国古代天象记录总集[M]. 南京: 江苏科学技术出版社,1988.
[ 2 ] 星语StarWhisper[OL]. [2024-03-10]. https://github. com/Yu-Yang-Li/StarWhisper.
[ 3 ] 张培瑜. 三千五百年历日天象[M]. 郑州:河南教育出版社,1990.
[ 4 ] 刘次沅,马莉萍. 中国历史日食典[M]. 北京:世界图书出版公司,2006.
[ 5 ] 刘次沅. 中国古代常规日食记录的整理分析[J]. 时间频率学报,2006(2):151–160.
[ 6 ] 刘次沅,马莉萍. 二十五史点校本修订工程与历代天象记录的全面检校[J]. 中国科技史杂志, 2010,31(4):501–508.
[ 7 ] 刘次沅. 诸史天象记录考证[M]. 北京:中华书局,2015.
[ 8 ] 胡铁珠.《大衍历》交食计算精度[J]. 自然科学史研究,2001(4):312–319.
[ 9 ] 邢钢,石云里. 汉代日食记录的可靠性分析—— 兼用日食对汉代历法的精度进行校验[J]. 中国科技史杂志,2005(2):13–27.
[10] 李亮. 明代历法的计算机模拟分析与综合研究[D]. 合肥:中国科学技术大学,2011.
[11] 滕艳辉. 宋代朔闰与交食研究[D]. 西安:西北大学,2012.
[12] 崔健骅,黎耕,赵永恒. 中国古代天象记录数据库的设计与实现[J]. 天文研究与技术,2023,20(2): 179–188.
[13] 王晓光,谭旭,夏生平. 敦煌智慧数据研究与实践[J]. 数字人文,2020(4):11–23.
[14] 王晓光,梁梦丽,侯西龙,等. 文化遗产智能计算的肇始与趋势——欧洲时光机案例分析[J]. 中国图书馆学报,2022,48(1):62–76.
[15] 夏翠娟. 多模态文化遗产资源的智慧化服务模式研究——从可获得到可循证和可体验[J]. 信息资源管理学报,2023,13(5):44–55.
[16] 刘炜,刘倩倩,付雅明,等. 人工智能时代的元数据方法论[J]. 图书馆理论与实践,2023(4):16.
[17] 陈涛,苏日娜,张永娟,等. 智慧数据驱动的古籍智慧性保护体系研究[J]. 中国图书馆学报, 2023,49(1):68–81.
[18] 王军. 古籍资源的数字化与智能化开发利用[J]. 文献,2023(2):188–190.
[19] 王东波,刘畅,朱子赫,等.SikuBERT 与SikuRo-
BERTa:面向数字人文的《四库全书》预训练模型构建及应用研究[J]. 图书馆论坛,2022,42 (6):31–43.
[20] 吴娜,刘畅,刘江峰,等.AIGC 驱动古籍自动摘要研究:从自然语言理解到生成 [J/OL]. 图书馆论坛,1–14[2024-04-24].
http://kns.cnki.net/kcms/ detail/44.1306.G2.20240325.1134.004.html.
[21] KELM:Integrating
Knowledge Graphs with Language Model Pre-training Corpora[OL]. [2024- 03-10].
http://blog.research.google/2021/05/kelm-integrating-knowledge-graphs-with.html.
[22] Tomaz Bratanic. What are the limitations of LLMs,and how to overcome
them[OL]. [2024-03- 10].
https://neo4j.com/developer-blog/fine-tuning-retrieval-augmented-generation/.
[23] Caufield J H,Hegde H,Emonet
V,et al. Structured prompt
interrogation and recursive extraction of semantics (SPIRES):A method for populating
knowledge bases using zero-shot learning[J]. arXiv preprint arXiv:2304.02711,2023.
[24] Peter Lawrence. LLM Ontology-prompting for
Knowledge Graph Extraction[OL]. [2024-03-10].
https://blog.gopenai.com/llm-ontology-prompting-for-knowledge-graph-extraction-efdcdd0db3a1.
[25]
Agarwal O,Ge H,Shakeri S,et al. Knowledge graph based
synthetic corpus generation for knowledge-enhanced language model
pre-training[J]. arXiv preprint arXiv:2010.12688,2020.
[26] Yang L,Chen H,Li Z,et al. ChatGPT is not Enough: Enhancing Large Language
Models with Knowledge Graphs for Fact-aware Language Modeling[J]. arXiv
preprint arXiv:2306.11489,2023.
[27] Ye H,Zhang N,Deng
S,et al. Ontology-enhanced Prompt-tuning
for Few-shot Learning[C]// Proceedings of the ACM Web Conference 2022. 2022:778–787.
[28] Wang H,Liu C,Xi N,et al. Huatuo:Tuning llama model with
Chinese medical knowledge[J]. arXiv preprint arXiv:2304.06975,2023.
[29] Fu P,Zhang Y,Wang
H,et al. Revisiting the
knowledge injection frameworks[J]. arXiv preprint arXiv:2311.01150,2023.
[30] Rony M R A H,Kumar U,Teucher
R,et al. SGPT:a generative approach for
SPARQL query generation from natural language questions[J]. IEEE Access,2022,10:70712–70723.
[31] Tomaz Bratanic. Generating Cypher Queries With
ChatGPT 4 on Any Graph Schema [OL]. [2024-03-10].
https://neo4j.com/developer-blog/generating-cypher-queries-with-chatgpt-4-on-any-graph-schema/.
[32] neo4j-advanced-rag [OL]. [2024-03-10]. https://
python.langchain.com/docs/templates/neo4j-advanced-rag.
[33] Knowledge Graph RAG Query Engine[OL].
[2024-03-10]. https://docs.llamaindex.ai/en/stable/
examples/query_engine/knowledge_graph_rag_ query_engine.html.
[34] d’Aquin M. Modularizing ontologies[M]//Ontology
Engineering in a Networked World. Springer,
Berlin,Heidelberg,2012:213–233.
[35] Cuenca J,Larrinaga F,Curry
E. Moddals metho-dology for designing layered ontology structures[J]. Applied
Ontology,2020,15(2):185–217.
[36] 管锡华. 校勘学教程[M]. 北京:北京大学出版社,2013.
[37] 李明杰. 简明古籍整理教程[M]. 武汉:武汉大学出版社,2018.
[38] 常娥. 古籍智能处理技术研究[D]. 南京:南京农业大学,2007.
[39] 中华书局的古籍整理平台[OL]. [2024-03-10].
http://auto-edit.ancientbooks.cn/DocZhengli/.
[40] Shapes Constraint Language (SHACL)[OL]. [2024-03-10].
https://www.w3.org/TR/shacl/.
[41] P Hitzler. Ontology Engineering with Ontology
Design Patterns: Foundations
and Applications[M]. IOS Press,Amsterdam,The
Netherlands,2016.
[42] Cogan Shimizu,Quinn Hirt,Pascal Hitzler. MODL:
A Modular Ontology Design Library[C]. International Semantic Web
Conference,2019.
[43] Odp:What
Is A Pattern[OL]. [2024-03-10]. http:// ontologydesignpatterns.org/wiki/Odp:WhatIsAPattern.
[44] Asprino L,Daga E,Gangemi
A,et al. Knowledge Graph
Construction with a fa?ade:a
unified method to access heterogeneous data sources on the Web[J]. ACM
Transactions on Internet Technology,2023,23(1):1–31.
[45] Erich Gamma. 设计模式:可复用面向对象软件的基础[M]. 北京:机械工业出版社,2019.
[46] Falco R,Gangemi A,Peroni
S,et al. Modelling OWL
ontologies with Graffoo[C]//European Semantic Web Conference. Springer,Cham,2014:320–325.
[47] 刘昫. 旧唐书[M]. 北京:中华书局,1975.
[48] 唐振贵,罗锦坤. 中国古代时间本体:细化数字人文研究的时间轴向[J]. 图书馆杂志,2022,41( 4): 87–95;37.
[49] 刘次沅. 中国古代日月食及月五星位置记录的研究和应用[M]//
中国古代天象记录的研究与应用. 北京:中国科学技术出版社,2013.
[50] 陈久金. 中国古代日食时刻记录的换算和精度分析[J]. 自然科学史研究,1983(4):303–315.
[51] 陈久金. 中国古代时制研究及其换算[J]. 自然科学史研究,1983(2):118–132.
[52] 徐振韬. 中国古代天文学词典[M]. 北京:中国科学技术出版社,2013.
[53] Baichuan2-7B-Chat[OL]. [2024-03-10]. https://
huggingface.co/baichuan-inc/Baichuan2-7B-Chat.
[54] LangChain[OL]. [2024-03-10]. https://www. langchain.com/.
[55] Streamlit[OL]. [2024-03-10]. https://streamlit.io/.
[56] FastAPI[OL]. [2024-03-10]. https://github.com/
tiangolo/fastapi.
[57] StarrySkyMemory[OL]. [2024-03-10]. https://
github.com/lengmenjuexue/StarrySky Memory.
[58] 上海图书馆人名规范库[DB/OL]. [2024-03-10].
https://names.library.sh.cn/mrgf/home/index.
[59] 上海图书馆书目数据发布平台[DB/OL]. [2024- 03-10]. https://bib.library.sh.cn/bibrepo.
|